Estimasi Parameter Model Volatilitas Stokastik dengan Metode Bayesian Rantai Markov Monte Carlo untuk Memprediksi Return Saham
نویسندگان
چکیده
Parameter dari suatu distribusi biasanya belum diketahui nilainya, untuk mengetahuinya dilakukan estimasi terhadap parameter tersebut. Metode ada dua macam, yaitu metode klasik dan Bayesian. Bayesian merupakan yang menggabungkan sampel dengan prior. Untuk mendapatkan secara acak adalah menggunakan simulasi. Salah satu teknik simulasi digunakan dalam rantai Markov Monte Carlo (RMMC), membangkitkan peubah-peubah didasarkan pada Markov. Pada penelitian ini dibahas tentang RMMC algoritma Gibbs Sampling . bekerja membangun pengambilan rekursif posterior bersyarat penuh masing-masing parameternya. ini, diterapkan mengestimasi model Volatilitas Stokastik hingga konvergen. Model kemudian memprediksi return saham PT. Indofood CBP Sukses Makmur Tbk. (ICBP.JK). Berdasarkan diperoleh didapatkan hasil prediksi hampir mendekati data aktualnya.
منابع مشابه
Bayesian parameter estimation in dynamic population model via particle Markov chain Monte Carlo
In nature, population dynamics are subject to multiple sources of stochasticity. State-space models (SSMs) provide an ideal framework for incorporating both environmental noises and measurement errors into dynamic population models. In this paper, we present a recently developed method, Particle Markov Chain Monte Carlo (Particle MCMC), for parameter estimation in nonlinear SSMs. We use one eff...
متن کاملEnsemble Bayesian model averaging using Markov Chain Monte Carlo sampling
Bayesian model averaging (BMA) has recently been proposed as a statistical method to calibrate forecast ensembles from numerical weather models. Successful implementation of BMA however, requires accurate estimates of the weights and variances of the individual competing models in the ensemble. In their seminal paper (Raftery et al. Mon Weather Rev 133:1155–1174, 2005) has recommended the Expec...
متن کاملBayesian Parameter Estimation: A Monte Carlo Approach
This paper presents a Bayesian approach, using parallel Monte Carlo modelling algorithms for combining expert judgements when there is inherent variability amongst these judgements. The proposed model accounts for the situation when the derivative method for finding the maximum likelihood breaks down Introduction An expert is deemed to mean a person with specialised knowledge about a given subj...
متن کاملBayesian Computation Via Markov Chain Monte Carlo
A search for Markov chain Monte Carlo (or MCMC) articles on Google Scholar yields over 100,000 hits, and a general web search on Google yields 1.7 million hits. These results stem largely from the ubiquitous use of these algorithms in modern computational statistics, as we shall now describe. MCMC algorithms are used to solve problems in many scientific fields, including physics (where many MCM...
متن کاملBayesian Generalised Ensemble Markov Chain Monte Carlo
Bayesian generalised ensemble (BayesGE) is a new method that addresses two major drawbacks of standard Markov chain Monte Carlo algorithms for inference in highdimensional probability models: inapplicability to estimate the partition function and poor mixing properties. BayesGE uses a Bayesian approach to iteratively update the belief about the density of states (distribution of the log likelih...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Jurnal Matematika Integratif
سال: 2022
ISSN: ['1412-6184', '2549-9033']
DOI: https://doi.org/10.24198/jmi.v17.n2.34805.73-83